Welcome to our CHEM 4 lecture

Review clicker question: Covers material from last class Go to <u>LearningCatalytics.com</u> Session ID = 57445144					
1) What total volume (in L) would you get if you added the following volumes:					
(4700 μL) + (6.0 x 10 ⁻³ L) = ???					
A) 0.001 L C) 0.009 L E) 0.011 L					
B) 0.0010 L D) 0.01 L F) 0.0107 L					
Answer: • Convert μ L to L: $(4700 \mu$ L) $(\frac{10^{-6} L}{1 \mu}) = 0.0047 L$ (keep 2 sf)					
• Undo the scientific notation: $2 sf$ 6.0 x 10 ⁻³ L = 0.0060 L (keep 2 sf) $10,000^{ths}$ $10,000^{ths}$					
• Add the volumes: $0.004\frac{7}{7} + 0.006\frac{6}{9} = 0.0107 L$ (keep 10,000 ^{ths})	1				

Key to Success in CHEM 4

- ✓ Visit our CHEM 4 website regularly: <u>tinyurl.com/SacStateChem4</u>
- Attend every lecture having completed the assigned reading.
- Review our PowerPoint slides and/or lecture recordings after each class (they are posted on the above website in the calendar section)
- Keep up with daily homework. However, all students will automatically receive full credit for all late homework this semester.
- Complete all of the practice exams.
- ✓ Talk to your Commit to Study peer mentor about how you are doing in CHEM 4.
- ✓ Get help when needed:
 - Put together a weekly study group.
 - ✓ Jeff's office hours: MWF 9 9:30 am and 11 11:30 am; and by appointment.
 - ✓ PAL office hours: link is on our CHEM 4 website.

Prerequisites for CHEM 1A/1E

Students can meet the *chemistry prerequisite* in any of the following ways:

- Having a Chemistry Diagnostic Score of 35 or higher. (not available during COVID)
- Completed CHEM ALEKS (CARA) with 85% of the topics completed.
- Passing CHEM 4 or CHEM 6A with a grade of C or better.
- Having obtained D to a C- in CHEM 4 AND completing 85% or the topics successfully in CARA.

Students can meet the *math prerequisite* in any of the following ways:

Math Prerequisite for CHEM 1A:		Math Prerequisite for CHEM 1E:		
•	A Math ALEKS PPL Score of 61 or higher	 A Math ALEKS PPL score of 76 or higher 		
•	Successful completion of Math 12 or the equivalent	Successful completion of Math 29 or equivalent		
•	Current enrollment in Math 26A, Math 29 or a higher	• Enrollment in a math course of Math 30 or higher		
•	Score of a 3 or higher on AB or BC Calculus AP Test	• Score of a 3 or higher on AB or BC Calculus AP Test		
•	Ability to enroll in Math 26A or Math 29			

- Questions can be directed to Dr. Susan Crawford (crawford@csus.edu) or Dr. Roy Dixon (rdixon@csus.edu)
- Chem department: <u>https://www.csus.edu/college/natural-sciences-mathematics/chemistry/</u>
- Math dept ALEKS PPL: <u>https://www.csus.edu/college/natural-sciences-mathematics/math-placement-exam/</u>

CHEM 4 lecture

Wednesday – October 14, 2020

Sec 2.7 – 2.8

Multi-step conversions

• When converting between 2 metric prefixes, I recommend you go to the base unit first.

Example: The 1999 noble prize in chemistry was awarded to Ahmed Zewail (Egyptian-American, prof at CalTech) for his study of chemical reactions on the femtosecond (fs) timescale. How many milliseconds (ms) are in 5.40 x 10⁴ fs?

Answer:
1) Flowchart:
$$fs \rightarrow s \rightarrow ms$$
 2) Conversion factors: $\left(\frac{1 \text{ fs}}{10^{-15} \text{ s}}\right) \left(\frac{1 \text{ ms}}{10^{-3} \text{ s}}\right)$

3) Perform calculation:

4)

5.40 x 10⁴ fs
$$\left(\frac{10^{-15}}{1 \text{ fs}}\right) \left(\frac{1 \text{ ms}}{10^{-3} \text{ s}}\right) = 5.4 \text{ x } 10^{-8} \text{ ms} = 5.40 \text{ x } 10^{-8} \text{ ms}$$

Sig figs: 3 sf $\approx \text{ sf} \qquad \approx \text{ sf}$

5) Check answer: Correct units. "ms" are bigger than "fs", so there should be fewer "ms" than our starting number of "fs". The exponent makes sense: $(10^4)(10^{-15})(10^3) = 10^{-8}$

Progress clicker question: Covers material we are learning now Go to LearningCatalytics.com Session ID = 57445144

4) How many ng are in 6.0 kg?

A)	6.0 x 10 ⁹ ng	E)	6 x 10 ¹² ng
B)	6.0 x 10 ¹²	F)	6.0 x 10 ³ ng
- 1		- 1	0

- 6 x 10³ G) 6.0 x 10⁹ C) H) 6×10^9 ng
- D) 6.0 x 10¹² ng

Answer:

2) Conversion factors: 1) Flowchart: $kg \rightarrow g \rightarrow ng$

$$\left(\frac{10^3 \text{ g}}{1 \text{kg}}\right) \ \left(\frac{10^{-9} \text{g}}{1 \text{ ng}}\right)$$

3) Calculation:
$$(6.0 \text{ kg}) \left(\frac{10^3 \text{ g}}{1 \text{ kg}}\right) \left(\frac{1 \text{ ng}}{10^{-9} \text{ g}}\right) = 6 \times 10^{12} = 6.0 \times 10^{12} \text{ ng}$$

4) Sig figs: $2 \text{ sf} \qquad \text{ sf} \qquad \text{ sf} \qquad \text{ Keep 2sf}$

5) Check answer: Correct units. "kg" are bigger than "ng", so there should be a large number of "ng" in 6.0 kg. The exponent makes sense: $(10^3)(10^9) = 10^{12}$

Progress clicker question: Covers material we are learning now Go to LearningCatalytics.com Session ID = 57445144

- 5) How many inches are equivalent to $63.00 \,\mu\text{m}$?
 - A) 0.0025 in. E) 0.002 in.
 - B) 2.48 x 10⁻³ in.
 - 0.0024803 in. **C**)
 - D) 1.6 x 10⁻⁶ in.

- F) 2.5 x 10¹⁰ in. G) 0.002480 in.
- H) 6.2 x 10⁻⁷ in.

Answer:

2) Conversion factors: $\left(\frac{10^{-6} \text{ m}}{1 \text{ }\mu\text{m}}\right) \left(\frac{39.37 \text{ in.}}{1 \text{ m}}\right)$ 1) Flowchart: $\mu m \rightarrow m \rightarrow in$.

5) Check answer: Correct units. Seems reasonable since μ m are so small.

88 km/s **C**)

D) 0.57 km/s

F) 34 km/s

G) $2.1 \times 10^3 \text{ km/s}$

Handle numerator and denominator separately.

Answer:

6)

numerator: miles \rightarrow km *denominator:* $hr \rightarrow min \rightarrow s$ Flowchart: 1) $\left(\frac{1 \text{ mile}}{1.609 \text{ km}}\right)$ $\left(\frac{1 \text{ hr}}{60 \text{ min}}\right)$ **Conversion factors:** 2) $\left(\frac{55 \text{ miles}}{1 \text{ kr}}\right) \left(\frac{1.609 \text{ km}}{1 \text{ mile}}\right) \left(\frac{1 \text{ kr}}{60 \text{ min}}\right) \left(\frac{1 \text{ min}}{60 \text{ s}}\right) = 0.024581944 = 0.025 \text{ km/s}$ Calculation: 3) ∞ sf ∞ sf 2 sf Sig figs: 4)

Check answer: Correct units. Seems reasonable since "s" are small. 5)

Progress clicker question: Covers material we are learning now Go to LearningCatalytics.com Session ID = 57445144

7) Usain Bolt, holds the world record for running 200.0 m in 19.19 s. Assuming he ran at that same speed, how long would it take him to run 100.0 yards?

	 A) 9 s B) 953.0 s C) 8.77 s 	 D) 31 s E) 8.771 s F) 8.8 s 	Hint: Make a conversion factor out of the first sentence: $\frac{200.0 \text{ m}}{19.19 \text{ s}}$			
Answer: 1) Flowchart: $yd \rightarrow m \rightarrow s$ 2) Conversion factors: $\left(\frac{1 \text{ m}}{1.094 \text{ yd}}\right) \left(\frac{200.0 \text{ m}}{19.19 \text{ s}}\right)$						
3) Calculation: $(100.0 \text{ yd}) \left(\frac{1 \text{ m}}{1.094 \text{ yd}}\right) \left(\frac{19.19 \text{ s}}{200.0 \text{ m}}\right) = 8.7705566728 = 8.771 \text{ s}$						
4)	Sig figs: 4 sf	4 sf 4sf	Keep 4sf			

5) Check answer: Correct units.